Assignment 2.

1. Expand $\frac{2-x^2}{\sqrt{4+3x}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [6]

2. (a) Simplify the expression
$$(\sqrt{1+x} + \sqrt{1-x})(\sqrt{1+x} - \sqrt{1-x})$$
. [2]

(b) Using this result, expand $\frac{1}{\sqrt{1+x} + \sqrt{1-x}}$ in ascending powers of x, up to and including the term in x^4 . [5]

- 3. When $(2-3x)(1+ax)^{\frac{3}{4}}$, where a is a constant, is expanded in ascending powers of x, the coefficient of the term in x is zero.
 - (a) Find the value of a.

[3]

(b) When a has this value, find coefficient of the term in x^4 in the expansion of $(2-3x)(1+ax)^{\frac{3}{4}}$. [4]

- 4. It is given that $f(x) = \frac{x^2}{(x+1)(x-1)^2}$.
 - (a) Write f(x) in terms of partial fractions.

(b) Hence expand f(x) in ascending powers of x, up to and including the term in x^4 . [4]

5. (†) Let $f(x) = \sqrt{x^6 + 3x^5}$. By considering the expansion of $\left(1 + \frac{3}{x}\right)^{\frac{1}{2}}$, find the term which is independent of x in the expansion of f(x) in powers of $\frac{1}{x}$, for |x| > 3. [6]

Show that there is no term independent of x in the expansion of f(x) in powers of x, for |x| < 3.

Total mark of this assignment: 28 + 8.

The symbol (†) indicates a bonus question. Finish other questions before working on this one.

[2]