Assignment 2.

1. Expand $\frac{2-x^{2}}{\sqrt{4+3 x}}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients. [6]
2. (a) Simplify the expression $(\sqrt{1+x}+\sqrt{1-x})(\sqrt{1+x}-\sqrt{1-x})$.
(b) Using this result, expand $\frac{1}{\sqrt{1+x}+\sqrt{1-x}}$ in ascending powers of x, up to and including the term in x^{4}. [5]
3. When $(2-3 x)(1+a x)^{\frac{3}{4}}$, where a is a constant, is expanded in ascending powers of x, the coefficient of the term in x is zero.
(a) Find the value of a.
(b) When a has this value, find coefficient of the term in x^{4} in the expansion of $(2-3 x)(1+a x)^{\frac{3}{4}}$.
4. It is given that $f(x)=\frac{x^{2}}{(x+1)(x-1)^{2}}$.
(a) Write $f(x)$ in terms of partial fractions.
(b) Hence expand $f(x)$ in ascending powers of x, up to and including the term in x^{4}.
5. (\dagger) Let $f(x)=\sqrt{x^{6}+3 x^{5}}$. By considering the expansion of $\left(1+\frac{3}{x}\right)^{\frac{1}{2}}$, find the term which is independent of x in the expansion of $f(x)$ in powers of $\frac{1}{x}$, for $|x|>3$.

Show that there is no term independent of x in the expansion of $f(x)$ in powers of x, for $|x|<3$.

Total mark of this assignment: $28+8$.
The symbol $(\boldsymbol{\dagger})$ indicates a bonus question. Finish other questions before working on this one.

